A generalized q-binomial Vandermonde convolution

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalized Vandermonde Determinant

Interpolation theory suggests a generalization of the usual Vandermonde determinant to numbers with multiplicities. We prove a discriminant formula for this generalized Vandermonde determinant and give an application to the Hermite interpolation problem.

متن کامل

The Generalized Vandermonde Matrix

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...

متن کامل

The Negative q-Binomial

Interpretations for the q-binomial coefficient evaluated at −q are discussed. A (q, t)-version is established, including an instance of a cyclic sieving phenomenon involving unitary spaces. 1. The q-binomial The q-binomial coefficient is defined for integers k and n, with 0 ≤ k ≤ n, and an indeterminate q by

متن کامل

On the binomial convolution of arithmetical functions

Let n = ∏ p p νp(n) denote the canonical factorization of n ∈ N. The binomial convolution of arithmetical functions f and g is defined as (f ◦g)(n) = ∑ d|n (∏ p (νp(n) νp(d) )) f(d)g(n/d), where ( a b ) is the binomial coefficient. We provide properties of the binomial convolution. We study the Calgebra (A,+, ◦,C), characterizations of completely multiplicative functions, Selberg multiplicative...

متن کامل

Note on the Convolution of Binomial Coefficients

We prove that, for every integer a, real numbers k and ℓ, and nonnegative integers n, i and j, i+j=n a i + k − ℓ i a j + ℓ j = i+j=n a i + k i a j j , by presenting explicit expressions for its value. We use the identity to generalize a recent result of Chang and Xu, and end the paper by presenting, in explicit form, the ordinary generating function of the sequence 2n+k n ∞ n=0 , where k ∈ R.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1971

ISSN: 0012-365X

DOI: 10.1016/0012-365x(71)90018-5